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In order to act intelligently within its environment, an agent must possess an internal
model of that environment (see Craik, 1943; Johnson-Laird, 1983; Gentner & Stevens, 1983).
The objective of this research is to investigate how humans leamn internal models (“concepts”) to
characterize general categories of training instances (i.e., objects, events, or situations), and how
these models facilitate the acquisition, organization, and retrieval of new information.
Understanding how humans acquire and apply models of categories can also provide valuable
information about how general conceptual knowledge is represented in long term memory.
These issues have long been considered central to a scientific understanding of human
intelligence, since concepts are crucial to our abilities to leamn, reasor, and communicate.
Furthermore, the experiments described here may shed light on central functional properties of
human learners that could have direct practical applications, by aiding in the design of training
programs, instructional materials, computer-assisted learning systems, and the testing and
selection of personnel.

Theoretical Background

It is commonly believed that people learn about new objects and events by storing
something like a list of features for each such pattern they encounter. But there are at least two
limiting factors inherent to this process. The first limitation results from a severe bottleneck in
the rate at which people can encode new information into memory (see, e.g., Simon, 1974); this
sharply limits how much can be learned in a given interval. The second limitation, common to
any intelligent system with a very large memory database, is the difficulty of quickly searching
through the database and locating a particular piece of knowledge when it is needed. Human
search resources, like encoding resources, are limited; thus, the larger the data base that would
be encoded as independent feature lists, the longer this search would take to find a specific bit of
knowledge. This fact has received extensive validation; the more independent facts that people
are taught about a particular topic or concept, the more time they require to exactly verify any
one of them from memory (see J. R. Anderson, 1976, 1983 for reviews of this research). In
principle, these two source of competition ought to create major obstacles to our abilities to learn
and retrieve information from memory; yet, we do not seem to suffer nearly as much from them
in everyday life as laboratory experiments suggest we should. People seem to use efficient
strategies to overcome these limitations.

In our Research Proposal, we suggested that humans overcome these limitations by
encoding new information in terms of previously-acquired knowledge. We distinguish between
two possible memory organizations relating general category knowledge with information about
specific instances or exemplars (see Figure 1). In Figure 1a, the learner "tape records” and stores
the full listing of features associated with each instance, plus its category membership. No
distinction is made between features which are predictable on the basis of knowledge about the
general category (henceforth referred to as "category features") and features which are specific
to a particular instance (henceforth, "distinctive features"). According to this theory, if the
learners have a category model, this will not directly reduce competition for encoding and
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retrieval resources; however, they could use the model at the time of testing to recover category
features of the instance which they couldn’t retrieve directly. In other words, information stored
in the model could be recruited to augment an incomplete feature-list, due either to defective
storage or partial forgetting of a particular instance. However, such "trace augmentation" could
only be used to improve recall of category features; since distinctive features cannot be inferred
from the model, they obviously cannot benefit from this reconstructive process.

Figure 1b depicts a memory organization resulting from a more efficient encoding
strategy that we believe people use. In this approach, the learner has re-allocated encoding
resources, so that they are not squandered by forming redundant associations from the instance
to features which could have been inferred easily from category membership. Consequently,
more time would be available for encoding those distinctive features which could not have been
predicted generically in advance. Moreover, this "schema-plus-distinguishers” organization
facilitates later retrieval of this information: because fewer new associations are learned, there
will be less competition for search resources at the time of retrieval. By combining the general
knowledge stored in the category model with this reduced representation of instances, all the
instance’s features can be encoded, stored, and retrieved in the most economical manner
possible.

Our hypothesis is that people tend to allocate their attentional resources so as to focus
mainly on informative, distinctive features. This hypothesis has several interesting theoretical
and empirical implications. In particular, it is incompatible with many current "instance storage"
models of category representation (e.g., Medin & Schaffer, 1978; Hintzman, 1986). The major
theoretical points, as well as our preliminary experimental research on this topic, were discussed
in the Research Proposal. The experiments described below were designed to shed light on these
issues, and to develop new empirical methods for their investigation.

Experiment 1: Generalization from Instances

In experiments supported by earlier AFOSR funds (summer 1986), we obtained evidence
that people tend to learn instances based on their category membership, as depicted in Figure 1b,
rather than "tape recording” a full listing of their features, as in Figure la. But the subjects in
those earlier experiments were directly taught the generalizations that we wanted them to know
for later use; it was therefore important that we also develop an experimental preparation in
which we could observe how people learn and apply category models for themselves, using only
instances in the absence of explicit category training. Therefore, we conducted an experiment in
which subjects were allowed to induce for themselves the shared properties which defined
categories of stimuli; we then examined the organization of the memory structures that resulted
and how they were used in encoding new instances.

In this experiment, subjects were presented with a series of training instances from two
distinct categories. For each category, a set of features consistently appeared in every instance
of that category, with different consistent features in the two categories. One category contained
three consistent features while the other category had four. Each instance of a given category
contained all the consistent features specified by that category, plus one or two additional
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features that were distinctive to that instance. For purposes of comparison, we also included an
equal number of randomly-constructed "control stimuli"; these were matched with the category
members in their number of features, but did not possess either of the consistent feature clusters.
After repeated experience with instances of both categories, we expected our subjects to learn
which groups of features consistently co-occurred across instances. The subjects were not told
which category each instance belonged to, or even that there were separate categories in the
experiment at all. However, we expected that subjects would discover that many of the stimuli
could be characterized as belonging to one of two groups of correlated features; this would be
equivalent to their discovering two different categories. Such correlated features should become
predicted features (expected defaults) in the subjects’ internal models of these categories.

The procedure on each trial will now be described. First, a training instance was
presented on a CRT screen. An instance consisted of a series of letters; for instance, a particular
instance might contain the letters B, D, Q, and N. This feature list remained on the computer
screen for a short period of time (one second per feature), during which the subject was asked to
study and try to memorize the instance. After this brief study period, the instance disappeared
from the screen and was followed by a short distractor task (a simple arithmetic problem) to
reduce short-term memory. Following the distractor task, the subject was asked to free-recall all
of the letters in the most recently studied list. Recall was recorded by the subject typing the
letters into a computer keyboard.

We expected that subjects would learn the clusters of features which characterized the
two categories, and use this knowledge to improve their memory performance. As expected, our
subjects showed substantially better memory for the features of category members than for
control stimuli of the same length. This result clearly showed that subjects were able to induce
category-level knowledge and use it to improve their memory performance. But since both of
the memory organizations depicted in Figure 1 can predict some benefit on overall memory
performance due to category knowledge, we need to examine more detailed predictions to
differentiate them.

The major difference between these theories arise in their predicted effects on memory
for an instance’s distinctive features--those which cannot be directly recovered from a model of
the general category. The "tape recorder” theory predicts no benefit of category-learning on
memory for distinctive features, relative to the control condition; that theory implies only that
the subject can reconstruct the instance’s category features from general knowledge at the time
of testing. On the other hand, the theory depicted in Figure 1b does predict better memory for
distinctive features, because the learner is assumed to attend selectively to them during
encoding; moreover, these distinctive features experience less competition from other features
during the memory retrieval process. In accordance with the latter theory, our subjects showed
significantly better recall for distinctive features of category members than for the corresponding
features of control stimuli (p<.01).

The results of this experiment support our hypothesis that people learn instances in terms
of a category model. Their strategy during the study period appears to be this: they quickly
identify the category default features in the stimulus; they then neglect these while they
selectively attend to and form strong associations with the distinctive features of each instance.




At recall, they recover the category features from the category model, then add the memories of
the specific distinctive features of the recent instance they’re to recall. These results have
opened the way to detailed investigation of the structure of these category models, how they are
learned, the strategies by which they are applied, and several other issues of theoretical and
practical import.

Experiment 2: The Impact of Knowledge on Perceived Similarity

We claim that people represent instances primarily in terms of a general concept, plus
associations to the distinctive features of that specific instance. This distinctive information
should receive most attention during the encoding period, whereas the category features should
be treated as background. These ideas have several implications regarding people’s judgments
of how similar various category members should appear to each other. By testing and
developing these implications, we hoped to use similarity judgments as an analytic tool for
illuminating the nature of the underlying pattemn representations. In turn, we hoped to uncover
new insights about how knowledge affects similarity judgments themselves; this is an important
objective because similarity is one of the most fundamental and ubiquitous independent
variables in the study of cognition.

Our theory predicts that subjects’ judgements of how similar two patterns are will be
dominated by the instances’ distinctive features--that is, category features will have little impact
on subjects’ comparisons. This hypothesis leads to the seemingly paradoxical argument that two
instances of a given category may often become less similar as people become increasingly
familiar with that category. A moment’s thought reveals that this is actually a commonplace
phenomenon associated with expertize: people who become very expert about a particular
domain (e.g., expert botanists, wine tasters, dog show judges, etc.) are highly sensitive to
differences among the objects in that domain, while taking their well-known commonalities for
granted. For instance, a black oak and a red oak are much less alike in the mind of an expert
botanist than they are to most non-experts. In fact, our tendency to take for granted what we
know about a general domain and to focus attention on the novel aspects of instances is probably
what allows us to discover progressively more specific subcategories within that domain, which
is one characteristic of experts.

This analysis implies that when an instance of a category violates the subjects’ default
expectations, such as an instance which has a missing category feature, that absence should be
highly salient and have a strong effect on similarity. We can use this hypothesis to predict and
explain situations in which decreasing the number of common features shared by two stimuli
leads to increased similarity, in direct contradistinction to results ordinarily obtained in
similarity experiments (e.g., Gati & Tversky, 1984). This counter-intuitive prediction should be
obtained when the subtracted common feature is an expected default for a category to which
both instances belong. We hypothesize that deleting a category feature from the stimulus should
cause subjects to add information to their internal description of the stimulus - namely, that a
given expected feature is missing from that stimulus. If this explicit recording of an observed
anomaly were to occur for both of the stimuli under comparison, the physical deletion operation
would have the paradoxical psychological effect of increasing their "common" features. By
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similar reasoning, deleting an expected feature from one of the stimuli but not from the other
would result in the addition of an unusually salient difference (distinctive feature) between them.
An expectation failure should produce a very salient feature, so it should cause a greater drop-off
in similarity than would a simple difference in the variable features of the two patterns being
compared.

The experiment to test these implications consisted of a series of simnilarity judgements in
which college-student subjects rated the similarity of pairs of instances on a 20-point scale. The
stimuli were realistic line drawings of fictitious insects ("bugs"), all of which shared a common
"base" structure consisting of parts such as head, thorax, abdomen, six legs, eyes, and so on. In
addition to this common base, a number of features (e.g., wings, tails, antennae) could be added
or removed to construct different instances. Two of these features were consistently presented in
all instances (defaults), and two others were presented half the time (variables); additionally,
instances were varied along several other attributes to increase the perceived variability of the
category. We expected that after several trials, subjects would learn a structural model for the
consistently correlated features, treating them like a category of stimuli; this model would
specify which features were correlated (expected defaults) and which tended to vary across
instances. In the midst of this uniform training series, we occasionally presented stimulus pairs
in which one or both insects violated the category expectations; such bugs would either be
missing an expected default, or they would possess an extra feature not seen in any of the other
instances. We were interested in how subjects would rate the similarity of two bugs that were
deviant in the same way, in contrast to the way they rated matched, "normal" pairs.

As expected, the results showed that subjects’ expectations influenced their similarity
judgements. However, violations of defaults had a much larger effect when they served as
distinctive features (differences) than when they served as common features. As predicted, we
found that pairs in which one member was missing an expected feature (or in which a previously
unencountered feature was added) were rated less similar than pairs which differed by a variable
feature. In other words, if one insect had wings and the other did not, the effect of this
distinctive feature was greater if subjects expected all instances to have wings (or expected none
of them to) than if they expected wings to be present or absent equally often. In the data,
however, when both test instances were missing an expected feature, their similarity was not
increased by this shared anomaly -- such pairs were rated the same as pairs in which the defaults
were present. This outcome was not as predicted. However, the shared anomaly did eliminate
the effect of adding common features, an effect that is typically found in similarity experiments.
To illustrate, if wings were an expected default, then pairs which had wings were as similar as
those which did not; but for subjects who learned wings as a variable feature, pairs which shared
this attribute appeared slightly more similar than pairs in which it was missing. Adding an
unexpected feature had a slightly larger effect than adding variable features, but this difference
did not reach statistical significance.

Although these results clearly showed that subjects’ category models were influencing
their judgements, we were disappointed that pairs which lacked expected defaults were not rated
more similar than normal pairs. Perhaps this was due to subjects weighing distinctive features
more heavily in their judgements, than they did common features (seven times as much) -- a
typical result with pictorial stimuli (see Gati & Tversky, 1984). In fact, our subjects’ reports




(and other data) convinced us that most subjects were computing similarity of two bugs by
simply counting the differences between the bugs, and largely ignoring common features. This
would, of course, wash out the impact of our manipulation of common features. To circumvent
this trivial strategy, we designed a second study in which (1) we could independently validate
our hypothesis that people note the absence of expected information as a explicit feature of a
particular instance, and (2) we could pursue the "common deviation" effect in a situation which
minimized those factors that prevented its strong emergence in the previous experiment.

Experiment 3: The Evolution of Conceptual Structure

In this experiment, we pursued our hypothesis that pairs of stimuli which deviate from
their category norm in the same way (by lacking the same default feature) should be judged
more similar than equivalent pairs of normal stimuli. This result would be important not only
for providing further support for our basic attentional and representational hypotheses, but also
for showing the importance of shared deviations in guiding people’s induction of new categories
and subcategories in everyday life. It has been suggested (e.g., by Schank, 1982) that many
concepts are primarily defined by clusters of shared exceptions to more general norms. For
instance, people have a model or "script” for how to behave in a fast-food restaurant such as
MacDonald’s (Shank & Abelson, 1977); for many of us, this script is defined mainly in terms of
how it violates the standard, sit-down restaurant routine, e.g., by paying before rather than after
the meal, by getting food at a stand-up counter. Such intuitions suggest that the increased
similarity which results from shared deviance should be an important determinant of our real-
world learning.

A second motivation for Experiment 3 was to validate further our claim that people
spontaneously notice and encode the absence of expected information. We sought for validation
in some behavioral indicators besides similarity judgments. To this end, we developed a new
training procedure which allowed us to observe the evolution of a category model as it was being
learned. Subjects were shown a series of individual insect stimuli, much like those used in the
previous similarity experiment. Once again, there were two features which were consistently
present in almost all of the instances (defaults) along with two features which were present or
absent equally often (variables). For each instance, subjects were asked to write down a short
list of that insect’s characteristics. They were told that they need not exhaustively list every
feature of the instance, but to list only those which they would need to distinguish it from other
members of the same category (e.g., to select it from among several close alternatives on a
multiple-choice recognition test). This task had two purposes: (1) to insure that subjects paid
full attention to each presented instance; and (2) to allow us to observe whether subjects learned
the regularities in the stimuli. Once a category model had been leamed, an "ideal subject” in this
task should list only the variable features of each stimulus, not its constant (expected) features
since only the variable features would be useful for distinguishing difference instances.

In addition to presenting standard category members in this task, we also presented two
deviant instances (between the eighth and fifteenth trials). Each deviant insect was missing a
different default attribute. We were curious whether subjects would notice this absence, and
explicitly list it as a distinguishing descriptor of that instance. Obviously, if subjects




spontaneously mention the absence of a particular feature in an instance, one would be forced to
conclude that they did, indeed, notice and encode this deviation into their representation of that
instance.

Several similarity judgements were interspersed among the attribute listing trials. On
two of these trials, the pairs of instances had a common default feature deleted; on another two
trials, the insects were identical to those above, except that their default features were left intact.
Rather than making a single judgement of overall similarity, as in the previous experiment,
subjects compared the two insects according to five different criteria. These criteria were their
1) physical similarity, 2) inferred genetic/evolutionary similarity, 3) inferred behavioral
similarity, 4) inferred similarity of habitat, and 5) likelihood of being able to interbreed (another
index of inferred genetic relatedness). We suspected that different comparative judgements
might be sensitive to different types of information.

The results for the attribute listing task strongly supported our initial hypotheses. As
predicted, after the first few trials our subjects mentioned the presence of expected (default)
attributes much less frequently than variable attributes. This indicates that they had learned that
the presence of the default features could be taken for granted, and that they provided no useful
information for differentiating the current instance from other category members. Moreover,
this learning occurred very rapidly; after seeing only five instances, the frequency of mention for
default attributes had dropped dramatically, from roughly 55 percent on the first instance to 10
percent on the fifth instance (see Figure 2), where it remained thereafter. The overall number of
descriptors used dropped by about a constant one-third per trial during this learning interval.

Another result of major interest was that subjects were very likely to notice and report
the absence of default features in the two deviant instances. Subjects responded more strongly to
the absence of default features (about 75 percent) than they ever did to their presence. The rate
of responding for defaults dropped dramatically on the trial following the instance with missing
feature, but the rate still remained higher than it had previously been for several trials thereafter.
The result suggests that unexpectedly missing feature had temporarily "sensitized" the subjects
to noticing and reporting to that feature--much as an unexpected stimulus produces an orienting
reflex and temporarily releases habituation from an overly familiar stimulus. This result leaves
no doubt that the absence of default features was generally encoded as part of subjects’ instance
representations.

Interestingly, subjects showed no tendency to rate deviant pairs more similar than normal
pairs on any of the five comparison questions, even though we can be quite sure (from the
attribute-listing results) that they must have detected the missing attributes. Several alternative
explanations of this odd result come to mind. The most plausible is that subjects continued to
make their ratings primarily on the basis of the instances’ distinctive features, rather than their
common features, as in the previous experiment. As described above, several procedural
changes were introduced in this experiment to circumvent such a comparison strategy. But the
present results, in addition to conversations with our subjects, lead us to believe that these
modifications did not achieve their desired result. Apparently, when two well-leamed and
highly similar visual patterns are presented side-by-side for a similarity judgement, subjects find
a "difference counting” strategy very compelling for making their similarity ratings. The next
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study was designed to avoid this problem by using a stimulus domain in which people normally
weight common features more heavily than distinctive features in their judgments.

Experiment 4 : Shared Deviance and Perceived Similarity

Our first two similarity experiments suggested that a surprising or unexpected feature
(e.g., a missing default) has a strong impact as a difference between two stimuli; but those
experiments provided no evidence that a missing default had much impact when it is a
characteristic shared by the two test instances. However, research by Gati and Tversky (1984)
demonstrated with pictorial stimuli that people generally weight distinctive features more
heavily than common features in their similarity radngs; conversely, common features had a
greater effect on the similarity of verbal stimuli (e.g., descriptions of people, meals, trips, and so
on). Thus, our next step in this line of research w:.s to conduct an experiment analogous in most
respects to our previous studies, except that the stimuli consisted of verbal descriptions rather
than pictures of objects. We hypothesized that shared violations might increase similarity in
such an experiment, in line with our original expectations.

The experimental procedure was similar in most respects to Experiment 2, except that
verbal rather than pictorial stimuli were used. The stimuli were lists of disease symptoms
supposedly associated with specific medical patients. The subjects rate * *he similarity of many
pairs of such instance-lists, using a 20-point scale as in the previous simu....ity experiments. The
main independent variable in this study was the probability with which different symptoms
appeared in the instances. This probability-of-occurrence factor was varied through severel
levels; some symptoms appeared very frequently, being listed for over 90 percent of the patients,
while others occurred only rarely.

We expected that the weight of a given common feature in the similarity judgement
would depend on its probability of occurrence. Features which occurred with a very high
probability (i.e., greater than 90 percent) would be learned as defaults in subjects’ category
models; because of their predictability, such defaults were expected to have little impact on
subjects’ ratings. By contrast, surprising or exceptional feature values (e.g,. the absence of an
expected default, or the presence of a low-probability feature) should be weighted more heavily
in subjects’ ratings. Thus, pairs in which a default was absent from both instances should have
been rated more similar than equivalent pairs in which this feature was present. By similar
reasoning, low-probability common features were predicted to increase similarity more than
features which occurred with a higher probability. In general, the lower the probability of a
given feature value (presence or absence), the greater its predicted impact as a common feature.

The results were somewhat surprising in light of these predictions. Across all
experimental conditions, pairs in which a given feature was present were rated more similar than
pairs in which it was absent, the usual "common feature” effect found in most similarity
experiments (e.g., Gati & Tversky, 1984). We had expected that this typical result would be
reversed for defaults, i.e., that the shared absence of a default feature would result in higher
similarity than its presence. However, we found exactly the opposite result; eliminating defaults
from both pair members caused a large decrease in their similarity. In fact, this common-feature
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effect was significantly /arger for defaults than for any of the other probability-of-occurrence
conditions; by contrast, we had predicted that this effect would be negative, or at least reduced in
size (as in Experiment 2). Except for the defaults, the impact of a common feature seemed
independent of its probability; for example, features which occurred in S0 percent of the
instances had roughly the same weight as those which occurred in under 10 percent. Thus,
although our subjects did seem to treat predictable defaults differently from other features which
varied unpredictably from trial to trial, the pattern of results was quite different than we had
expected.

These results are somewhat counter-intuitive; common sense would seem to imply that
two category members which deviate from the norm in the same way ought to appear more
similar as a result. In making our original predictions, we assumed that if two instances were
members of the same categery, then removing a category default from both would increase their
perceived similarity. In retrospect, it now seems possible that removing a default from the
instances may sometimes eliminate the basis for their common categorization; if this is what
occurred, the result would be a reduction in similarity, rather than an increase. This is
particularly likely to occur if the categorization of the instances was originally based on a very
few consistent features; in this case, removing even one expected feature might change how the
instances are categorized. Significantly, there were only two consistently-present features in the
present experiment; by contrast, the insect stimuli in the previous similarity experiments bore an
obvious structural resemblance to each other. (In general, one difference between pictures and
verbal feature lists is that structural overlap is generally much more apparent in the former type
of stimuli). Thus, a shift in categorization due to removing a default might have caused the
unexpected results obtained in this experiment.

One difficulty which has become apparent in using similarity ratings as a experimental
"microscope” for the issues we wish to investigate is taat the task seems to impose very little
constraint on the strategies which subjects can use to compute their ratings. For example, even
when it is apparent that subjects notice certain properties of the stimuli (as demonstrated by
other performances, such as the attribute listing task used in Experiment 3), they may not use
these properties to compute numerical ratings, or they may use them quite differently in different
situations. Thus, we’ve been forced to cvonclude that similarity judgments do not seem to
provide a very direct index of how people represent the experimental stimuli; they are too
strongly influenced by a large number of task-specific factors to be as useful as we had first
hoped. By contrast, we have found that memory tasks provide far more constraint on subjects’
performance. In our memory experments, the best learning strategy is to give priority to
encoding those values which are least predictable on the basis of general knowledge. Since
subjects seem to utilize their category models in more predictable and consistent ways in
memory tasks than in judgement tasks, the former have so far proven more useful for
investigating the variables of interest to us.
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Experiment 5: Learning Concepts from Unreliable Data

In most realistic learning situations, the data upon which learners must base their
generalizations contain errors and exceptions. In this experiment, we wished to study peoples’
ability to learn relatively idealized concept models from "noisy" data, where generalizations
were somewhat unreliable because usually consistent features were sometimes replaced or
missing. This experiment should establish the generality of our earlier results and boundary
conditions for their application; in addition, its results should help us discriminate among the
various hypothetical processes by which concept models might be learned and applied.

A recall procedure similar to that in Experiment 1 (Generalization from Instances) was
used. The stimuli were sequences of six letters; each position in the sequence can be thought of
as an attribute, and the letters which fill that position as the alternative values of the attribute.
All attributes were trinary, i.e., there were three possible letters which could occur in a given
position. On each trial, the subject was presented with a single instance (six-letter string) for a
brief study period, followed by a 15-second distractor task to reduce short-term memory, and
then a recall test. Each subject was exposed to instances of a single concept, characterized by
both "Consistent” and "Variable" attributes. For the Consistent attributes, one value occurred
more frequently than the other two; this was the modal (default) value of that feature. In
contrast, all three values of the Variable attributes occurred equally often. The major
independent variables were (1) the reliability (probability of occurrence) of the modal values of
Consistent features (60, 70, 80, or 90 percent); and (2) the ratio of Consistent to Variable
features characterizing the concept (four Consistent and two Variable, versus two Consistent and
four Variable). A control condition was also included in which all six attributes were Variable.
Thus, a total of nine conditions were to be run in a between-subjects experiment design.

We were interested in how these factors affect peoples’ ability to learn and apply
idealized concept models in the face of noisy data. Given such a model, remembering any
instance need only involve (1) encoding the values of its Variable features, and (2) encoding any
non-default values of its Consistent features. This implies that subjects should best remember
the Variable features of prototypical instances, whose Consistent features ali have their default
values. Each exceptional value of the Consistent features competes with learning and
remembering the Variable features; hence, the more such exceptions are present, the poorer
memory should be for the Variable features. This memory benefit for prototypical instances
should index the extent to which subjects rely on a category model to learn the instances. By
examining how this benefit varies with the reliability and number of default attributes, we may
be able to characterize how these factors affect the formation and utilization of concept models.

At the time of this writing, a partial version of this experiment has just been completed at
Brooks Air Force Base, and we arc awaiting the data. Provided that this data "checks out" (i.e.,
subjects understand the task, are performing at a reasonable level of accuracy, and so on), we
will then proceed with the complete experiment. We anticipate completion of this experiment
within the next six to eight weeks.

k. _ .
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Forecast

We are currently planning a number of experiments, some of which are extensions of the
research reviewed above or originally described in our Research Proposal, and some of which
are based on ideas developed over the last year. We anticipate completing the following three
within approximately the next six months. We hope to conduct one or two of these experiments
at the LAMP laboratory at Brooks Air Force Base in San Antonio.

Proposed Experiment 1: The Organization of Natural Knowledge Bases

The purpose of this proposed experiment is to develop a gencral procedure or set of
diagnostic indices for determining the structure of naturally existing databases (so-called
"semantic memory"). This is an important objective for validating the everyday relevance of
conclusions based on laboratory-produced knowledge. Equally important, it could help us to
discover important new questions that might be missed if we only studied artificial knowledge
structures. Our main objective in this research is to discover what types of facts tend to be
stored together (directly associated with each other) in semantic memory. Previous attempts to
accomplish this goal (e.g., Collins & Quillian, 1969) were flawed in several respects, but we
believe that we have developed a procedure which avoids these difficulties and will allow us to
make solid conclusions about long-term memory organization.

The general procedure is as follows: On each trial, the subjects will be presented with
one or more facts, all supposedly pertaining to a particular instance of a familiar category (e.g., a
bird, chair, restaurant visit, etc.). This feature list will include: (1) the category label for that
instance; (2) zero, one, or two facts predictable from this category membership, and (3) zero,
one, or two facts not predictable frora category membership (or presumed not to be directly
associated with it in semantic memory). For example, the subject might be told the instance
under consideration is a bird, has feathers, has a beak, is yellow, and is in the park. The last two
properties are irrelevant (or not defining), and the middle two are relevant (defining) to the bird
category. Following this study period, a test statement will be presented; the subject must decide
from memory as rapidly as possible whether this fact was in the list they had just studied. For
example, the subject might be asked whether it was stated that the instance was yellow. Both the
speed and accuracy of subjects’ decisions will be recorded.

Our main hypotheses concern the effects of category-relevant versus category-irrelevant
facts on the speed and accuracy with which subjects can retrieve the instance’s category label.
Our predictions can be understood by referring to Figure 3, which depicts an instance associated
in memory with several presented facts. By this depiction, associations with irrelevant facts
should compete for search resources (activation) with the association from the instance to the 1
category label. Because such irrelevant associations reduce the amount of activation which 1
reaches the category label, they should reduce its availability from memory. The effects of
category-relevant facts should be somewhat more complex. Due to their prior associations in !
semantic memory with the category label, activation of these facts should also activate the '
category label; but this activation arrives indirectly and consequently should be somewhat q
dissipated relative to when the category label is presented alone. Therefore, adding only

]
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Figure 3. Associative structure representing an instance plus its associated |
feature list. Previously existing category-to-feature associations are indicated
by boldface links.
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relevant facts ought to slightly reduce the availability of the category label, although much less
than adding irrelevant facts would. On the other hand, if irrelevant facts have also been
presented, then adding relevant facts should tend to siphon activation away from these other
facts and back to the category label, reducing the severity of the competition from the irrelevant
facts. This implies that adding relevant facts <tould increase the availability of the category
label if irrelevant facts have also been presented; but without such irrelevant facts, relevant facts
should either have no measurable effect or slightly impair category retrieval.

These predictions assume that the relevant facts have prior associations in long-term
memory with the category, and that the irrelevant facts do not. The experiment will test this
representational assumption; the predicted results should obtain only if it holds for the categories
we investigate. Examining such patterns of facilitation and interference will provide a general
procedure for investigating the organization of semantic memory. Irrelevant facts will be of
several types, including: (1) specific facts about an individual, not predictable from any existing
categorization (our first planned experiment of this type); (2) facts predictable from a
superordinate level of categorization, but which in theory should not be directly associated with
the target category (e.g., "has lungs" or "has bones" for a bird), and (3) facts predictable from a
subordinate level of categorization (e.g., "is nocturnal” and "is wise" for owls as a type of bird).
Such experiments should demonstrate that information pertaining to superordinate or
subordinate categories tends to be stored at its appropriate level of categorization and is not
directly associated with the target category, as hierarchical models of semantic memory
organization suggest. We could also use this technique to demonstrate that our knowledge of
specific domains is not organized in this fashion; this would allow us to develop theories which
specify the particular conditions under which different types of memory organizations tend to
evolve. If successful, this technique could become a valuable new tool for the investigation of
semantic memory.

Proposed Experiment 2 : Abstracting Regularities from Training Instances

In our Research Proposal, we argued that instance-based learning models do not provide
straightforward capabilities for the kind of knowledge organizations that we have created in our
experiments. To arrange another test, we note that different theories assume that learners use
different aspects of the training instances to guide their performances. Instance-based models
assume that classification performance is based on computing the similarity of the new instance
independently to each instance stored in memory, or to some remembered subset of these
instances (e.g., Estes, 1986; the Minerva model of Hintzman, 1986; the Context model of Medin
& Schaffer, 1978). This Independent Instances Assumption implies that learners should not be
sensitive to how much the instances in memory overlap with each other, but only to how similar
each memory-instance is to the new instance to be classified. To illustrate, we will denote
experimental stimuli by vectors of binary values. Each element in these vectors stands for a
particular feature of a given stimulus. Taking a stimulus denoted by 111111 as a base, the
stimuli 111001, 111100, and 111010 all differ from 111111 by two feature values. Note that
stimuli 011011, 101101, and 110110 also differ from 111111 by two features. But the former
three instances all overlap with 111111 on the same three features, whereas the latter three
overlap on different features. Our theory expects that a schema would be formed for the former
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set of stimuli, which have a consistent set of overlapping features, but that no schema would be
formed for the latter set. However, a strict instance-based model would not predict any
difference in how easily 111111 would be categorized following subjects’ exposure to the two
sets of training stimuli. While standard Instance-Storage models are only sensitive to instance
similarity, models that compute generalizations directly capture and make use of the consistently
high feature-correlations in a given domain (Elio & Anderson, 1981).

The most straightforward way to evaluate the Independent Instance assumption is to test
whether people are sensitive to the indicated type of overlap among instances in memory.
Instance-Storage models attempt to account for transfer performance (e.g., on a following
classification task) entirely on the basis of summating the similarity of the transfer instance
across individual instances in memory. However, it is possible to hold this factor (similarity)
constant while separately manipulating the consistency of the overlap among the training
instances. If subjects’ performance in remembering or classifying a new instance differs
depending on this overlap manipulation, then we can conclude that they are learning and using
information other than that test instance’s similarity to previously stored instances.

We propose an experiment that directly tests the Independent Instance assumption.
Subjects will first be taught about two categories by showing them three or four exemplars of
each. The instances of one of these categories will overlap on a consistent subset of their
features (e.g., 111010, 111001, 111100), while the instances of the other category will lack such
a consistent feature group (e.g., 011011, 101101, 110110). We will refer to the former category
as the Consistent category, while the latter will be designated the Inconsistent category.

Following exposure to these instances, a transfer task will be administered to assess what
knowledge subjects have extracted from the training stimuli. Subjects will be presented with a
single test stimulus, and will choose which of the two training categories this stimulus best
exemplifies. A single pair of three- or four-instance training categories plus a transfer test can be
thought of as comprising a single trial. Each subject will receive many such trials, with different
stimuli each trial. By manipulating the nature of the categories and their relation to the test
instances, we can diagnose what subjects learn about each category, and how this serves as a
basis for their categorizations.

On some trials, the test stimulus will have the same average similarity to both categories.

For example, the stimulus 111111 differs by two features from each stimulus in the two training ﬁ

sets above. If subjects learn the default features of the Consistent category, then they should ]

categorize the test stimuli primarily on the basis of this feature group. If they do not discover the

consistently correlated elements, then they should choose Inconsistent and Consistent categories

equally often (assuming the two training sets are equally similar to the test stimulus). Moreover, *

if subjects base their classification performance mainly on the consistent feature groups, then a

training set containing such consistencies should be preferred over the alternative even if the

latter has greater average similarity to the test stimulus. We will compare subjects’

classification preferences when the training categories are equally similar to the test stimulus,

and also when the Inconsistent category is more similar to the test stimulus than the Consistent 1
1

category. We predict that subjects will prefer to classify on the basis of featureal consistency,
and will only use similarity when they have no other basis for making their choices.
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This paradigm is very analytic, and several fine-grained issues could be investigated
using it. Such investigations would involve varying the nature of the training categories (the
type of stimuli they contain and the manner in which they are presented), and observing how
these manipulations affect subjects’ categorization preferences. For example, when subjects are
forced to classify on the basis of similarity (i.e., when neither category has a consistent feature
group), will they classify mainly on the basis of average similarity to all stored exemplars, or on
the basis of high similarity to a single memory-instance? How will this strategy be affected by
the number of instances they have stored in memory for each category, and by how similar these
instances are to each other? Such issues can be easily investigated within the proposed
paradigm.

Proposed Experiment 3 : Spontaneous Induction of Default Hierarchies

Much of our knowledge of the world is stored in complex default hierarchies, i.c.,
organized around expectations derived from subordinate and superordinate relations among
different concepts (see, e.g., Holland, Holyoak, Nisbett, & Thagard, 1986). For example,
categorizing an object as a robin makes available a rich set of default expectations based on that
specific categorization, as well as more general expectations derived from the knowledge that
robins are birds, that birds are a type of animal, and so on. Since people seem to construct
organized default hierarchies when learning about most real-world domains, rather than merely
acquiring collections of unrelated single concepts, it is important to understand the processes by
which such learning occurs and the kind of knowledge base that results. Investigations in this
area will contribute to a general theory of inductive learning. Additionally, they should be
applicable to predicting human performance in applied domains, by elucidating the factors
which control inductive performances.

The attribute listing task (introduced in Experiment 3) provides an excellent procedure
for observing the evolution of default expectations on a trial-by-trial basis. In this proposed
experiment, we plan to extend and develop this promising task to study the spontaneous
induction of relatively complex default hierarchies. The stimuli for this experiment will consist
of pictures of fictitious insects, similar to those used in Experiments 2 and 3. In those
experiments, the stimuli were all instances of a single general concept. By contrast, stimuli in the
present experiment will be partitioned into two general (superordinate) categories, each of which
can further be divided into two more specific (subordinate) categories. An abstract depiction of
such a stimulus set is shown in Figure 4. In this illustration, the categories are represented by
vectors of binary values. The elements in these vectors correspond to specific stimulus
attributes, such as wings, eye color, and so on. Each "0" or "1" bit indicates which value (e.g.,
large/small wings) of the corresponding attribute is the default value for that category. An "X"
value indicates that the attribute varies randomly across different category members. The
superordinate categories are distinguished by different default values on four consistent
attributes. To illustrate, if these four attributes were assumed to correspond to wings, tails,
abdominal markings, and eye color (in that order), then category A insects might all have long
tails, small wings, stripes, and white eyes, while category B insects would have large wings,
short tails, spots, and black eyes as their default properties. The subordinate categories are
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Figure 4. An abstract depiction of the stimulus set to be used in Proposed #
Experiment 3.
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distinguished in a similar manner, by different default values on another set of four attributes.
These subordinate categories inherit the default properties of their superordinates; thus, category
Al and category A2 would hav: the same default values on four of their attributes, and
contrasting values on four others.

The procedure will be similar to the attribute listing task introduced in Experiment 3.
Subjects will be shown a series of individual stimuli, each a member of one of the categories
described above. For each presented instance, the subjects will be instructed to write down
whatever features of that insect they feel they would need to reconstruct it for a later recall test
(e.g., to draw the instance from memory with the aid of this feature-list). Within this memory
constraint, they will be urged to minimize the number of characteristics that they list for each
insect, i.e., to imagine that each feature they list costs them a dollar. As in previous experiments,
subjects will not be told which category each instance belongs to, or that the stimuli could be
divided into separate categories at all. However, we expect that subjects will discover this for
themselves, and that this knowledge will be reflected in the features which they list for each
instance.

The attributes listed on each trial will serve as an index of what subjects have learned
about the consistencies in the stimulus set up to that point in time. Eventually, most subjects
should list only those features which are not predictable defaults. We expect that the subjects
will first discover which attributes differentiate the two superordinate categories. As a result,
they should begin to drop these predictable attributes from their listings, continuing to mention
only one to indicate the category membership of each instance. For example, rather than
explicitly listing all four superordinate defaults, a subject might simply characterize each
instance as “"large winged" or "small winged". Thus, we expect that a single attribute will come
to serve as a proxy in subjects’ listings for all the default features of a given category.

After they have learned the two superordinate concepts, the subjects should next discover
further regularities which give rise to the four subordinate concepts. This learning should be
indicated by a drop-off in the frequency with which subordinate defaults are included in
subjects’ listings. Thus, we again predict that a single value will serve as a proxy for a larger
group of correlated subordinate defaults in subjects’ listings. After their learning is complete,
the number of properties which subjects should, in principle, need to list for a given instance
drops from an initial high of twelve to a final low of only six. This represents a considerable
savings in the amount of information subjects would need to record about a given instance in
order to fully reconstruct it at a later time.

We think the attribute listing task will be sensitive enough to reveal the evolution of such
conceptual hierarchies. If so, it will be one of the first clear revelations of how such hierarchies
are learned and utilized in organizing large data-bases. And that is one of the aims of this
project.
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